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ABSTRACT
Recommender system has become an important component
in modern eCommerce. Recent research on recommender
systems has been mainly concentrating on improving the
relevance or profitability of individual recommended items.
But in reality, users are usually exposed to a set of items and
they may buy multiple items in one single order. Thus, the
relevance or profitability of one item may actually depend
on the other items in the set. In other words, the set of rec-
ommendations is a bundle with items interacting with each
other. In this paper, we introduce a novel problem called
the Bundle Recommendation Problem (BRP). By solving
the BRP, we are able to find the optimal bundle of items
to recommend with respect to preferred business objective.
However, BRP is a large-scale NP-hard problem. We then
show that it may be sufficient to solve a significantly smaller
version of BRP depending on properties of input data. This
allows us to solve BRP in real-world applications with mil-
lions of users and items. Both offline and online experimen-
tal results on a Walmart.com demonstrate the incremental
value of solving BRP across multiple baseline models.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Filtering; G.1.6 [Numerical Analysis]: Optimization

Keywords
Bundle Recommendation; Recommender System; eCommerce;
Quadratic Knapsack Problem

1. INTRODUCTION
Recommender system is one of the key components in

eCommerce. It allows eCommerce company to provide per-
sonalized service to individual users, increase order size by
recommending accessories at checkout, and enhance user’s
loyalty and engagement [21]. Recent research on recom-
mender systems has been mainly focusing on improving the
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Figure 1: Distribution of order sizes

relevance of individual recommended items [16, 24]. How-
ever, in scenarios such as personalized email marketing and
webpage personalization, a user is usually exposed to mul-
tiple items at one time. The relevance or attractiveness of
one item may actually depends on the other items shown
to the user. Therefore, we argue that we should consider
the whole set of recommended items as a bundle instead of
treating them individually and independently. Here, we re-
fer bundle to a set of items that customers consider or buy
together. Examples of bundles are, just to name a few, lap-
top & accessories, mattress & bed frame & other bedroom
furnitures, and movies directed by the same director. Below
we list a few reasons why bundle recommendation matters.

Customer buy bundles. It has been reported that the
average order size for Amazon.com is 1.5 and 2.3 for Wal-
mart.com.1 Using the transaction data of Walmart.com, we
found over 1/3 of orders contain two or more distinct items
as shown in Figure 1.

Contextual influence. It is well known in classic mar-
keting research that there is an ‘1+1>2’ effect in carefully-
designed product bundles because they may generate con-
text that influences a customer’s evaluation and choice [4,
28]. For example, IKEA promotes their products (furni-
tures) by displaying multiple products together in a single
showroom to simulate an idea of perfect home. It is hard to
deny that a mediocre product may be more tempting when
displayed in the showroom.

1http://www.edatasource.com/Resources/Press_
Releases/release.aspx?id=125
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Figure 2: Product recommendations with and without bundles

Product compatibility or consistency. It is a better
experience for customers to see items which are compatible
and consistent with each other. For example, given that a
customer is interested in bedroom furnitures, it is not very
wise to recommend a double-size bed frame and a queen-size
mattress to the customer at the same time.

Cost saving. Taking advantage of economies of scale,
buying a bundle of products may cost less than buying each
product separately for both customers and retailers. For
example, it is a common practice for online retailers to waive
shipping fee if an order exceeds certain amount.

To give a palpable understanding, we illustrate the impor-
tance of considering bundles using a real-world example as
shown in Figure 2. Given a customer and his past activities
on a eCommerce website, a set top-8 relevant items are gen-
erated from a recommendation engine that is optimized for
relevance, which is shown in column (a). Those items with a
check mark are items bought by the customer. Column (b)
are what this customer eventually bought in the upcoming
week. Comparing columns (a) and (b), we observe that two
items (a crib and a dresser) are missing from the recommen-
dation list in column (a). Note that customers interested in
a crib mattress are very likely to be interested in cribs and
other furnitures as well. By considering the bundling ef-
fect, column (c) show the items selected using our proposed
approach (more details later). Note that all the items pur-
chased by the customer are captured in the recommendation
list. This case study just shows the potential if we consider
bundling effect properly. However, deciding which items to
put into a bundle is non-trivial. Typically, the number of
items to recommend is bounded by a constant. Take the
case study above as an example. We need to decide, not
only which items in Figure 2(a) to replace, but also which
items to bundle with other ones.

In this paper, we introduce a bundle recommendation
problem (BRP) that can promotes bundling effect during
recommendation. Its solution is a set of items that maximize
some total expected reward. Examples of the reward func-
tion include the conversion rate of items in the bundle, and
total revenue or profit of the bundle. The item-to-item cross-
dependencies are estimated from historical data and should
be able to incorporate contextual influence, product com-
patibility and cost saving automatically if their effects exist.
This also saves the trouble to estimate these cross-item de-
pendencies directly which can be both time-consuming and
ambiguously defined. Technically, the BRP is essentially a
type of Quadratic Knapsack Problem [6] and NP-hard in

general. We show that solving the BRP for all the items is
equivalent to solving it for a carefully-constructed candidate
set. When the estimated expected reward of items satisfies
Pareto Principle (also known as the 80-20 rule ), which is
valid in most cases, the size of the constructed candidate
set will be significantly smaller than the total number of all
items. This allows us to solve millions of NP-hard problems
in less than an hour on a few hundreds of nodes. We also
present several practical implementations of the bundle rec-
ommendation algorithm which makes the model very con-
venient to be applied to any existing recommender system.
In the evaluation session, we first test the BRP model on a
real-world date set from Walmart.com. We then conduct an
online A/B testing using the BRP model. Both the offline
and online results show that the BRP can consistently boost
the performance of the baseline methods.

The contribution of this paper is threefold. Firstly, we
propose a novel bundle recommendation problem which con-
siders the set of recommendations as a whole. It takes into
account cross-item dependencies explicitly and rigorously.
To the best of our knowledge, the BRP model is the first
model that considers the contextual influence of bundles in
recommender system; Secondly, we show that it may be suf-
ficient to solve BRP for a substantially smaller candidate
set, making it tractable and scalable; Thirdly, we justify the
efficacy of BRP by applying the BRP model to real-world
applications under both offline and online scenarios.

2. RELATED WORK
Recommender system has attracted a lot of attention since

the Netflix prize [12, 24, 20]. Majority of research on recom-
mender system has been focused on improving the accuracy
of predicting the relevance of individual item with respect to
a user [11, 23]. Item bundling in recommender systems has
been considered in vocation package recommendation [27,
15], but it is modeled as a (linear) knapsack problem and
no item-to-item pairwise dependency is considered in their
work. Item bundling is also considered in curriculum rec-
ommendation because of the sequential ordering of courses
[18] and time constraints. In these works, cross-item depen-
dencies are modeled as hard constraints which makes the
problem difficult to solve and unnecessary in our context.
In eCommerce, it is difficult to draw a hard constraint be-
tween two items, not to mention the size of catalog can be
overwhelming. More likely, users have different preferences
over item sets, rather than a clear yes or no. Therefore,
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those methods proposed in other domains cannot be applied
directly to eCommerce.

One seemingly relevant work is [8]. Indeed, Garfinkel et
al. studies a different problem. The bundles are predefined
by retailers with different cost/price. And the shopper has
his own request of products and thus has to choose a set of
bundles to satisfy his demand while minimizing the overall
cost. A greedy method is introduced to select bundles one
by one for the shopper. By contrast, in our application,
we have to decide which items to be put into a bundle and
recommend to customers.

On the other hand, researches on product/price bundling
have a longer history in traditional marketing and economics,
see e.g., [5, 26, 2]. Product/price bundling refers to the of-
fering of two or more products as one combined product at
one price. The psychological impact and economical reasons
of bundling products are well understood [5, 26], and the
techniques of designing bundles are well studied [2]. How-
ever, those bundling techniques are not personalized thus
not applicable in our case. Moreover, the bundling method
in traditional marketing is usually considering hard bundles
where products in bundle cannot be sold separately, while
we are considering soft bundles in recommendation where
the bundling is implicit and products in bundle can be sold
separately.

Another related problem is Quadratic Knapsack Prob-
lem (QKP). It is a general optimization model that can
take cross-dependency into account [6]. One simple ap-
plication of QKP is the Max-Clique problem [10] where
the cross-dependency is represented as unweighted edge in
graph. A more practical application of QKP is portfolio se-
lection problem in finance where the cross-dependency is the
covariance of two securities [13]. Although QKP is powerful
optimization model, it is rarely used for large-scale problem
in practice because QKP is NP-hard in general and only
small or medium scale problem is tractable by modern mixed
integer solver [14, 17].

3. BUNDLE RECOMMENDATION
In this section, we first define a general version of recom-

mendation problem where all kinds of cross-item dependen-
cies (e.g., contextual influence, cost dependency) are con-
sidered. With some assumption and approximation, the so-
called Bundle Recommendation Problem (BRP) is then in-
troduced.

In scenarios such as personalized email ad-campaigns and
product suggestions on product webpage, online customers
are usually exposed to a variety of relevant items. Typically,
the number of items to recommend at one time is bounded
by a constant, say k. Here, we consider the problem of select-
ing a set of k items from a given list of relevant items. More
precisely, given a user u, we want to recommend k items
from a catalog containing n items whose relevances with
respect to the user u are known. Note that the relevance
score can be imputed through any existing recommendation
techniques.

Let Ri1...ik denote the reward if items i1...ik are bought by
user u at the same time. The reward can be revenue, profit,
number of conversions etc. Because of economics of scale,
the reward usually satisfies the property Ri1...ik ≥

∑
j Rij .

Let P (i1, i2, ..., is|s, u) denote the probability that user u
buys items i1, i2, ..., is given that user u will buy s distinct
items. For presentation convenience, the notation of u is

skipped unless necessary, i.e., we simply use P (i1, i2, ..., is|s).
Let xi denote the decision variable where xi = 1 means item
i is shown to the user u and 0 otherwise. Then, the total
expected reward (denoted by Rtotal) of recommending a set
of k distinct items to user u can be written as

Rtotal(x) =

(∑
i1

Ri1P (i1|s = 1)xi1

)
P (s = 1)

+

(∑
i1<i2

Ri1i2P (i1, i2|s = 2)xi1xi2

)
P (s = 2)

+ · · ·

+

 ∑
i1<...<ik

Ri1...ikP (i1, ..., ik|s = k)
∏
j

xij

P (s = k).

The goal of general bundle recommendation is to find a set
of k items such that the total expected reward Rtotal is max-
imized, i.e.,

max
x∈{0,1}n, |x|=k

Rtotal(x). (1)

Based on the distribution of order sizes from the Wal-
mart.com (see Figure 1), we found most online customers
purchase only one or two items in one shopping session.
Thus, it is usually sufficient to consider only the first and
the second terms and ignore the other higher order terms of
Rtotal(x):

Rtotal(x) ≈

(∑
i

RiP (i|s = 1)xi

)
P (s = 1)

+

(∑
i<j

RijP (i, j|s = 2)xixj

)
P (s = 2).

Let

ri = RiP (i|s = 1), (2)

Qij =

{
1
2
(Rij)P (i, j|s = 2) if i 6= j

0 if i = j
, (3)

λ =
P (s = 2)

P (s = 1)
, (4)

it follows that

Rtotal(x) ≈
∑
i

rixiP (s = 1) +
∑
i,j

QijxixjP (s = 2)

= P (s = 1)
[
rTx+ λxTQx

]
.

Since P (s = 1) is a constant given one user, the general
bundle recommendation problem (1) can be approximated
by

(BRP) max
x∈{0,1}n, |x|=k

rTx+ λ · xTQx. (5)

From now on, we refer problem (5) as the Bundle Recom-
mendation Problem, or BRP. We call the data r and Q the
expected reward vector and cross-dependency matrix.

3.1 Expected Reward & Cross-Dependency
Constructing the expected reward vector r and cross de-

pendency matrix Q is nontrivial. In this subsection, we
present one approach to estimate them.

First of all, the rewards Ri and Rij are not user-specific
and are given depending on the business requirement. For

659



www.manaraa.com

instance, if the recommendation is optimized for number of
conversions (purchases), then Ri = 1 and Rij = 2. Simi-
larly, the reward can be easily modified if revenue or profit
is emphasized.

On the contrary, the probabilities P (i|s = 1) and P (i, j|s =
2) are essentially user-specific, and thus it is very challeng-
ing to estimate them accurately. However, the probability
P (buy i|user u) or its proxy is usually available from any
recommender system. Meanwhile, the transition probability
P (buy i|buy j) can be estimated from historical transaction
data using the following formula:

P (buy i|buy j) =
# users who bought items i&j in one order

# users who bought item j
.

Then one way to approximate the probabilities P (i|s = 1)
and P (i, j|s = 2) is to use the following

P (i|s = 1) ∝ P (buy i|user u), (6)

P (i, j|s = 2) ∝ P (buy i|buy j) · P (buy j|user u)

+P (buy j|buy i) · P (buy i|user u).(7)

Plugging into Eqs. (2) and (3), we construct expected reward
vector r and cross-dependency matrix Q. Because of the
scaling effect in constructing r and Q, we leave the parame-
ter λ as a tuning parameter to control the level of bundling
effect in final recommendations.

We remark that Eqs. (6) and (7) are just one way to ap-
proximate probabilities P (i|s = 1) and P (i, j|s = 2). We
choose them because of their availability and ease to com-
pute. The technique discussed later in this paper applies to
any r,Q and does not depend on this approximation.

Caveat: Following Eq. (6), one may propose an alterna-
tive estimation of P (i, j|s = 2) as follows:

P (i, j|s = 2) ∝ P (buy i|user u) · P (buy j|user u).

But this is not recommended in general. Because it essen-
tially assumes the independence of purchases between items
i and j, which is against the original motivation of bundling.
It can be shown that the BRP in Eq. (5) in this case reduces
to maximizing only the first term, i.e., rTx, which does not
capture any cross-dependency at all. The details are skipped
due to space limit.

4. SOLVING BRP
In previous section, we have defined and instantiated the

bundle recommendation problem in eCommerce setting. In
this section, we discuss properties of BRP and derive an
efficient algorithm to solve the BRP with millions of items.

It is not hard see the BRP is a special case of Quadratic
Knapsack Problem [6]. It includes the k-clique problem [7]
as a special case if we let r = 0 and Q to be the adjacency
matrix of a given graph, thus we have

Proposition 4.1. The general BRP is NP-hard.

Moreover, the dimensionality of item space could be on the
order of millions in practice. If the dimensionality is one mil-
lion, there are roughly 2.48× 1043 possible combinations of
8 items. And we need to solve the BRP for hundreds of mil-
lions of users. This renders the problem highly intractable.

Based on the formulation, heuristics can be developed to
solve it, such as greedy method, or constraint relaxation
and then rounding. But those methods have no guarantee
of arriving at a global optimal solution. Below we show

several techniques to obtain global optimal of BRP for all
users in a reasonable amount of time. All the techniques are
based on the key idea of constructing a candidate set, i.e., a
subset of items, which contains the optimal item selection.

4.1 The Candidate Set
In this subsection, we define a candidate set and show

why it suffices to consider only items in the candidate set.
It is observed in practice that majority of items in the cat-
alog is irrelevant to a given customer. Figure 3 shows the
value of sorted r of one randomly picked customer, with
respect to reward being conversion, revenue and profit, re-
spectively. Apparently, no matter which reward function it
is, only a few items have a high score, while the remaining
have a value close to zero. Intuitively, it seems unnecessary
to consider those items when selecting the optimal item rec-
ommendation. This motivates us to construct a candidate
set of items which the optimal item recommendations can
only belong to.

We first introduce the dominance relationship between
items. This dominance relationship allows us to differen-
tiate the items that have the potential to be contained in
the optimal bundle from the ones that do not.

Definition 4.2. An item β is dominated by item α if the
following condition is satisfied

rα +Qαα + min
A⊆U, |A|=k−1

∑
i∈A,i6=α

λ(Qαi +Qiα) >

rβ +Qββ + max
B⊆U, |B|=k−1

∑
i∈B,i6=β

λ(Qβi +Qiβ) (8)

where U denote the index set of all the items in the catalog.

If an item in a recommendation list is dominated by an-
other item which is not in the list, it is always better to
switch these two items, as stated in the lemma below.

Lemma 4.3. If item β is dominated by item α then we
have

max
x ∈ {0, 1}n, |x| = k

xβ = 1, xα = 0

rTx+ λ · xTQx

< max
x ∈ {0, 1}n, |x| = k

xβ = 0, xα = 1

rTx+ λ · xTQx.

Proof. The main idea is to first decompose the objective
into terms that contain β and terms that do not. Then
bound the terms that contain β by the terms that contain
α using Definition 4.2.

max
x ∈ {0, 1}n, |x| = k
xβ = 1, xα = 0

rTx+ λ · xTQx

= max
x ∈ {0, 1}n, |x| = k
xβ = 1, xα = 0

 ∑
i6=α,β

rixi +
∑

i,j 6=α,β

xiλQijxj



+

rβ +Qββ +
∑
i6=β

λ(xiQiβ +Qβixi)


≤ max

x ∈ {0, 1}n, |x| = k
xβ = 1, xα = 0

 ∑
i6=α,β

rixi +
∑

i,j 6=α,β

xiλQijxj
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Figure 3: Profile of sorted r with respective reward being conversions, revenue and profit

+

rβ +Qββ + max
B⊆U, |B|=k−1

∑
i∈B,i6=β

λ(Qβi +Qiβ)


< max

x ∈ {0, 1}n, |x| = k
xβ = 1, xα = 0

 ∑
i6=α,β

rixi +
∑

i,j 6=α,β

xiλQijxj



+

rα +Qαα + min
A⊆U, |A|=k−1

∑
i∈A,i6=α

λ(Qαi +Qiα)


(Follow Definition 4.2)

= max
x ∈ {0, 1}n, |x| = k
xβ = 0, xα = 1

 ∑
i6=α,β

rixi +
∑

i,j 6=α,β

xiλQijxj



+

rα +Qαα + min
A⊆U, |A|=k−1

∑
i∈A,i6=α

λ(Qαi +Qiα)


= max

x ∈ {0, 1}n, |x| = k
xβ = 0, xα = 1

rTx+ λ · xTQx.

Now, we are ready to present our main theorem.

Theorem 4.4. Item dominated by k or more items will
not appear in an optimal selection.

Proof. Suppose there is an item i dominated by k or
more items in the optimal selection. Then, there is at least
one item which dominate item i but not in the optimal se-
lection; let j denote the index of this item. By Lemma 4.3,
swapping item i and j will increase the objective value which
contradicts the fact the current selection is optimal.

Thoerem 4.4 implies that we only need to solve the BRP
for the set of items that are not dominated by k or more
items, which we shall refer as the candidate set (denoted
by V).

Corollary 4.5. Given BRP with data r,Q and λ, we have

max
x∈{0,1}n, |x|=k

rTx+ λ · xTQx

= max
x∈{0,1}m, |x|=k

rTVx+ λ · xTQVx (9)

where V is the set of indices corresponding to the items that
are dominated by no more than k − 1 items, i.e.,

V = {i|ri + λδ̄i ≥ the k-th largest element in (r + λδ)} (10)

where δ̄, δ are n-dimensional vectors such that ∀i ∈ U

δ̄i = Qii + max
B⊆U, |B|=k−1

∑
j∈B,j 6=i

λ(Qij +Qji), (11)

δi = Qii + min
A⊆U, |A|=k−1

∑
j∈A,j 6=i

λ(Qij +Qji) (12)

and rV , QV denote the sub-vector and sub-matrix of r,Q with
rows and/or columns corresponding to the items that belong
to V and m = |V|.

For the bundle recommendation problem, the size of can-
didate set is usually significantly smaller than n and only
a few times larger than k in practice. Here show some em-
pirical results for the sizes of candidate set. The expected
reward vector r is estimated using the category-based rec-
ommendation model described in Subsection 5.1.1 and Q is
estimated using (7). Table 1 shows how the size of candidate
set m changes as λ varies. The histogram of m for different
users with λ = 0.8 is plotted in Figure 4.

Table 1: Candidate set size versus λ with k = 8
λ 0 0.2 0.4 0.6 0.8 1.0 1.2

Mean of m 8 11.5 13.2 14.8 16.5 18.1 19.5
STD of m 0 7.4 7.7 8.0 8.4 8.7 9.0

From Table 1 and Figure 4, we can see that the size of
the candidate set is indeed much smaller than n. This is
because the largest few ri’s is so dominant that the items in
the tail will never be the optimal selection (see Figure 3).
As the size of BRP is significantly reduced, global search
algorithm such as Branch and Bound [19] can be applied.
Plenty of existing software packages like MINOTAUR [14]
can be used.

4.2 Constructing the Candidate Set
Though the candidate set size is usually much smaller

than the total number of items n, which makes the BRP
tractable, constructing the candidate set V will take O(n2)
each user, which could be time-consuming. To construct the
candidate set using Eq. (10), we first need to compute the
upper and the lower bounds in Eqs. (11) and (12) respec-
tively for each item. This will cost in total O(n2 log k) time
if heap sort is used. Then, we can resort to heap sort again
to find out the k-th largest element in (r+λδ) and construct
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Figure 4: Distribution of candidate set size m, for
different users with λ = 1.2

the corresponding candidate set, which will take O(n) time.
In sum, the time complexity to construct the candidate set
is O(n2) when k is small. This is still time consuming if
the dimensionality of item space n is huge. Keep in mind
that the cross-dependency matrix Q is different with respect
to different users, we have to do this computation for every
single user, which makes it even worse. We have to develop
a more efficient method to obtain the candidate set in rea-
sonable time.

As shown in the previous section, the sizes of the con-
structed candidate set using Eq. (10) are typically very small.
This motivates us to relax the condition in Eq. (10) so we
may get a slightly larger candidate set but in less amount of
time. We notice that the term r + δ is mainly contributed
by the expected reward r, we may construct the candidate
set as follows:

V = {i|ri + λδ̄max ≥ the k-th largest element in r} (13)

where δ̄max = maxi δ̄i.
Any item picked by Eq. (10) will definitely picked by

Eq. (13). Therefore, we have the following corollary:

Corollary 4.6. Given BRP with data (r,Q) and λ, Eq. (9)
also holds true for V defined in Eq. (13).

Eq. (13) does not save much computational cost, as com-
puting δ̄max is still O(n2) for each user. But if we can esti-
mate or approximate δ̄max cheaply, then we only need O(n)
to construct the candidate set. Figure 5 shows a distribu-
tion of δ̄max for a subset of different users. We can see that
majority of δ̄max’s are small except a few in the tail. If we
assume δ̄max for each user is a random variable following the
distribution plotted in Figure 5, then a reasonable approxi-
mation of δ̄max is to use p-quantile of δ̄i’s (denoted by δ̄p),

V̂ = {i|ri + λδ̄p ≥ the k-th largest element in r} (14)

where δ̄p = inf{x|F (x) ≥ p}, F (·) is the empirical CDF
of the elements in vector δ̄. Examples of p could be 0.80,
0.90, 0.99.

Now, if using a small subset of users to estimate δ̄p in
advance, then constructing the candidate set V using Eq.
(14) only need O(n) for each user. If the candidate sets

δmax
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Figure 5: Distribution of δ̄max for different users

constructed using (14) contains at most m items for all users,
we can simply choose the largest m elements in r to form the
candidate set instead of having variable sizes of candidate
set for each user, i.e.,

V̂ = {indices of the largest m elements in ri}. (15)

And a larger p we choose for δ̄p, the larger m will be. There
is a one-to-one relationship between p and m. Therefore,
choosing p level for δ̄p is equivalent to choosing the corre-
sponding m.

Essentially, one can use anyone of (10), (13), (14) and (15)
to construct the candidate set. A good choice will depend on
the data set and the tolerance of accuracy. The candidate set
by (14) and (15) will take less time to construct but contain
more items and thus it takes more time to solve the reduced
BRP. In general, Eqs. (14) and (15) should be chosen if the
bottleneck is constructing the candidate set and vice verse.

4.3 The Bundle Recommendation Algorithm
In the subsection, we summarize the bundle recommenda-

tion algorithm. Let R(1) denote the one-item reward vector

where R
(1)
i = Ri, R

(2) denotes the two-item reward matrix

where R
(2)
ij = Rij and

P (1)
u = [P (buy 1|user u), ..., P (buy n|user u)]T

P
(2)
ij = P (buy i|bought j).

Given R(1), R(2), {P (1)
1 , ..., P

(1)
u }, P (2) the bundle recommen-

dation algorithm is summarized in Algorithm 1:
We remark that the for-loop in Algorithm 1 is embar-

rassingly parallel as users are independent of each other.
Modern large scale distributed computing framework such
as MapReduce [3] can be used.

We give a toy example to demonstrate how to use the
BRP algorithm for recommendation. Given items 1, 2, 3

and 4 with R
(1)
i = 1, ∀i, R(2)

ij = 2,∀i, j and

P (1) =


0.5
0.25
0.24
0.01

 , P (2) =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 , λ = 1.
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Algorithm 1: Bundle Recommendation Algorithm

Data: R(1), R(2), {P (1)
1 , ..., P

(1)
u }, P (2) and λ;

Result: indices of item to recommend for user u;
for i = 1, 2, ..., u do

Compute r using R(1) and P
(1)
i (Eq. (2) and (6));

Construct candidate set V using r (Eq. (15));
rV = [r]V ;

Compute QV using [QV ]kl = R
(2)
kl · P

(2)
kl · [P

(1)
i ]l for

k, l ∈ V;
Solve BRP with data (rV , QV , λ) using
Branch&Bound;
Output the indices of the optimal solution;

end

We need to recommend 2 items to this user. Apply Al-
gorithm 1 to the above data R(1), R(2), P (1), P (2), λ. Using
(10), (13), (14) or (15) with m = 3, we obtain the candi-
date set

V = {1, 2, 3}

because item 4 will never be the optimal solution. Then,
we have

rV =

 0.5
0.25
0.24

 , QV =

 0 0 0.37
0 0 0

0.37 0 0

 .

By solving the BRP with (rV , QV , λ), we obtain the optimal
selection (items 1 and 3). In contrast, items 1 and 2 will be
selected if we use traditional recommender system because
they are the two most relevant items. Intuitively, choosing
items 1 and 3 makes sense because user may buy item 3 as
well if he/she decides to buy item 1 which is very likely.

5. EXPERIMENTS
In this section, we first test the BRP model using three

baseline models on a 2-month transaction data collected
from Walmart.com. We then conduct an online A/B test
where the recommended items are sent to customer as an
email campaign. We would like to emphasize that all the ex-
periments and analysis are privacy-friendly as all customer
ids are anonymized into random integers. In our experi-
ments, the objective is to maximize conversion, thus the

rewards are set as R
(1)
i = 1 and R

(2)
ij = 2. Unless otherwise

specified, all the reported metrics are relative improvement
over the baseline models, i.e.,

improvement(%) =
x1 − x0
x0

× 100%

where x1, x0 are the metrics of the BRP combined with base-
line model (usually denoted by ‘BRP+baseline’) and the sole
baseline model respectively.

5.1 Baseline Models
We first briefly review three baseline models used for of-

fline evaluations. These baseline models are also used to
estimate the expected reward vector r for the BRP model.
We want to emphasize that our bundle recommendation al-
gorithm works as a post-processing step, and thus is orthog-
onal to the baseline model used to compute relevance.

5.1.1 Category-based Recommendation
The fundamental assumption of category-based recom-

mendation is that a user is more likely to purchase a product
within the same category if he has already indicated an in-
terest in a category. In particular,

P (buy i|user u) =
∑
c

P (buy i|buy in c) · P (buy in c|user u).

The interest categories of one user P (buy in c|user u) is
learned through his past actions. Each user is represented
as a multinomial distribution of interest categories, by map-
ping each of his actions to its corresponding category in a
carefully curated product taxonomy.

To estimate P (buy i|buy in c), we examine the popular-
ity of each product among existing transactions. In order
to capture the recent trend, we restrain ourselves to look
at transactions only within the past few days/weeks at rec-
ommendation time. Therefore, this category-based recom-
mendation prefers to pick those recent best-selling products
given one user’s personal interest categories.

5.1.2 Markov Model
Another commonly used approach for recommendation in

eCommerce is to model user actions as a markov chain [20].
That is, one’s current action depends only on his most recent
action (denoted by a(t)), i.e.,

P (a(t+1)|a(t), · · · , a(1)) = P (a(t+1)|a(t)).

In order to estimate the transtition probability from one
action to another, we simply count the coocurance of two
actions within a fixed time window:

P (buy i|bought j) =
# users who bought j then i

# users who bought j
(16)

As for prediction, a user’s profile is represented by the most
recent few transactions (T ):

P (buy i|user u) =
1

|T | ·
∑
j∈T

P (buy i|bought j).

5.1.3 Matrix Factorization Model
Matrix factorization has been shown to be a great success

for Netflix-prize competition [12]. Due to the scale of our
data set, we implemented a randomized matrix factoriza-
tion detailed in [25]. Basically, the method approximately
factorize a user-item matrix with a product of two lower-
rank matrices, i.e.,

Am×n ≈ Pm×k ×QTn×k.

In order to handle huge numbers of rows and columns while
minimizing the excess overhead in MapReduce iterations, it
proposes to use a randomized SVD [9] to compute QTn×k,
which can be accomplished through a simple random pro-
jection. Then it applies one iteration of alternating least
squares to obtain Pm×k given approximate Qn×k.

5.2 Offline Evaluation
In this subsection, we test the BRP model using two base-

line models - the category-based model and the Markov
model. The purpose of offline experiment is more about
testing the predicting power of the BRP model and verify-
ing our methodologies.
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5.2.1 Experiment Setup
We test our method on a subset of active customers from

Walmart.com. The transaction data from 6/1/2013 to 6/30/2013
are used to generate the expected reward vector r for all cus-
tomers and the conditional transition probability P which
are the input for Algorithm 1. Based on our experience,
it is reasonable to choose m in Eq.(15) to be 40 (this is
further justified by Table 3). For each customer, we recom-
mend 8 items. Without showing our recommendations to
the customer, we see how many of our recommendations ac-
tually appeared in the corresponding customer’s transaction
between 7/1/2013 and 7/20/2013. Please note that offline
evaluation is a conservative evaluation of the BRP model
as the customers did not actually see our recommendations.
We hope that a model with better accuracy in modeling
users’ purchase intention will incur more transactions on-
line. Such a setup for offline evaluation has been widely
used in recommender systems.

Different metrics, including precision, average order size
are reported. The precision of a recommender system is
defined as follows:

precision =
# of recs that appeared in transaction

# of all recs
.

And the average order size is defined for those customers
with at least one successful recommendation,

order size = Mean(# of successful recs for customer u).

We also evaluate how different the BRP recommends with
respect to baseline models.

overlap =
|{BRP recs} ∩ {baseline recs}|

|{baseline recs}| × 100%

Note that the reported overlap is the absolute value given
by the above formula.

We randomly divide all the customers into 5 groups, num-
bered from 1 to 5. In our experiment, group 1 is used to tune
the parameter λ and group 2 to 5 are exploited for offline
test. Performance metrics of different groups are reported.

5.2.2 Experiment Results
Precision improvement: Table 2 presents the precision

improvement over three baseline models. It is observed that
the positive improvement is quite consistent across all groups
and all baseline models. The same observation applies to av-
erage order size. The improvement may look marginal, be-
cause there is still a decent amount of customers who con-
sider only one item during a shopping session online (see
Figure 1). Note that most of the time, our BRP would not
change the recommendation list substantially, as indicated
by the column of overlap. This suggests that the BRP model
is able to strike a good balance to recommend highly relevant
items with a few bundling items.

Sensitivity to candidate set size: In our BRP algo-
rithm, we exploit Eq. (15) to construct candidate set effi-
ciently. One natural question is how sensitive our algorithm
is with respect to the candidate set size. Table 3 shows the
performance of group 2 with different candidate size. The
same pattern is observed for all other groups. As seen in
the table, all the performance metrics stabilizes for m ≥ 30.
Note that increasing the candidate set size generally will
lead to better performance, as shown in the last row of the
table. However, as we discussed, a larger candidate set will

Table 2: Relative improvement of BRP using 3 base-
line models

BRP(λ = 0.5)+Category-based
Group # precision order size overlap

1 0.82% 2.56% 88%
2 2.22% 3.59% 86%
3 2.14% 2.40% 86%
4 1.50% 1.91% 86%
5 2.16% 2.75% 86%

BRP(λ = 0.6)+Markov
Group # precision order size overlap

1 1.24% 2.89% 85%
2 0.69% 3.20% 85%
3 1.48% 2.33% 85%
4 1.26% 2.16% 85%
5 1.37% 2.26% 85%

BRP(λ = 1)+Matrix Factorization
Group # precision order size overlap

1 3.13% 4.66% 79%
2 3.58% 4.28% 79%
3 2.03% 3.93% 79%
4 2.25% 4.69% 79%
5 3.37% 3.43% 79%

Table 3: Relative improvement of precision and av-
erage order size with different candidate set size, m,
in (15) for Group 2

BRP(λ = 0.5)+Category-based
m precision order size overlap
10 0.88% 1.05% 90%
20 1.46% 2.84% 87%
30 2.01% 3.44% 86%
40 2.22% 3.59% 86%
50 2.13% 3.66% 85%
60 2.22% 3.74% 85%

incur more computational time to solve BRP. Given this
diminishing return, we have to balance between accuracy
and efficiency depending on business priorities and compu-
tational resources. In our application, it is reasonable to
choose m = 40.

Sensitivity to parameter λ: We use users in group
1 for tuning the parameter λ. The results of parameter
tuning are listed in Table 4. Note that when λ = 0, it
is essentially relying on baseline models alone without any
bundling consideration. Almost in all cases, a non-zero λ,
which encourages bundling, yields better performance with
respect to baselines. The empirical curve of precision with
respect to λ is concave, so an optimal λ can be located.
With increasing λ, i.e., stronger and stronger emphasize over
bundling, it is expected that the order size increases while
the overlap is getting smaller and smaller.

In summary, by considering the bundling effect, our BRP
model is able to capture user purchase intension more ac-
curately and those orders with multiple items. Next, we
apply our model to online setting, in which customers will
be influenced by our recommendations.
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Table 4: Relative improvement of precision and av-
erage order size using different λ for Group 1

BRP+Category-based
λ precision order size overlap

0.1 0.17% 1.00% 93%
0.2 0.26% 1.57% 91%
0.3 0.56% 1.87% 89%
0.4 0.77% 2.27% 87%
0.5 0.82% 2.56% 88%
0.6 0.52% 2.74% 84%
0.7 0.65% 2.88% 82%
0.8 0.60% 3.20% 81%
0.9 0.39% 3.16% 80%
1.0 -0.04% 3.15% 78%

5.3 Online Evaluation
In this subsection, we present an online A/B test result

for the BRP model. We compared the three baseline models
used in the offline evaluation and the performance of Markov
model is the best of the three. Matrix factorization performs
the worst in our particular application even after all kinds
of parameter tuning and twists. Its inferior performance
may be due to the extreme data sparsity and highly skewed
distribution in purchases [1]. Therefore, the winner, i.e. the
Markov model is chosen as the baseline model in our online
evaluation. We remark that there is a very small amount
of customers who have bought few items and the Markov
model cannot generate sufficient recommendations. In such
a case, the Category-based model (see Subsection 5.1.1) is
used.

A personalized email campaign was launched on Septem-
ber 25, 2013 for our online evaluation. Each email contains
8 recommendations which are randomly distributed to a 2
by 4 matrix in the email. All emails were sent out within the
same time period. We randomly select a small percentage
of customers from the eCommerce company for our email
campaign. The subset of customers are randomly divided
into test and control groups. For the customers in the con-
trol group, we send an campaign email with 8 item recom-
mendations generated by the baseline model only. For the
customers in the test group, we send 8 item recommenda-
tions generated by the baseline model with BRP model as
post-processor.

To evaluate the quality of recommendations, we exploit
click-to-open rate and conversion-to-open rate as our evalu-
ation metrics. They are defined as follows:

click-to-open rate =
# email click-thru’s

# email opens

conversion-to-open rate =
# conversions

# email opens

where a ‘conversion’ corresponds to the event that a cus-
tomer clicked an item in the email and eventually placed an
order in the same browsing session. Even though customers
who clicked one item in the email may buy it later, we de-
cide not to count those cases as conversions due to various
co-existing targeting channels like search engine marketing
or retargeting. The conversion attribution problem itself is

Table 5: Relative improvement of click-to-open rates
(click) and conversion-to-open rates (conversion) us-
ing BRP + Markov model after campaign

BRP(λ = 0.6)+Markov p-value
click(2 days after) 9.39% 0.041

conversion(2 days after) 54.67% 0.191
click(1 week after) 7.43% 0.093

conversion(1 week after) 48.92% 0.230

tricky and worth further research. Here we use a much more
conservative approach to count conversions.

The numbers of 2 days and one week after campaign are
listed in Table 5. Actually, the numbers do not change
much since two days after the email campaign. The Mann-
Whitney (or Mann-Whitney-Wilcoxon) Test described in
[22] is used to test the significance of the improvement using
BRP and the p-value is reported. From Table 5, we see that
BRP does improve both click-to-open rate and conversion-
to-open rate. The difference is significant for click-to-open
rate, indicating that our bundling recommendation algo-
rithm are more intriguing for customers to click. The im-
provement of bundle recommendation is more observable in
online setting than in offline setting because users were in-
deed exposed to the recommendation and thus contextual
influence could take effect.

The resultant conversions also jump, but the p-value is
larger due to data sparsity. Because the intrinsic nature of
purchases and our conservative way to count conversions, the
number of conversions is several orders smaller than email
opens and clicks. We believe the numbers here are a positive
sign and we hope to further verify the improvement signifi-
cance using a larger scale online bucket test in the future.

6. CONCLUSIONS AND DISCUSSIONS
In this paper, we introduced a novel bundle recommen-

dation model. The bundle recommendation model can be
considered as a post-processor, thus can be applied to any
existing recommender system. By ignoring the higher order
terms of the total expected reward function, the general bun-
dle recommendation model can be formulated as a quadratic
knapsack problem which we call the Bundle Recommenda-
tion Problem (BRP). However, the BRP is a large-scale NP-
hard problem in general and we need to solve it for each in-
dividual user. This renders the problem highly intractable.
To circumvent this, we showed that it is equivalent to solv-
ing BRP for only a subset of items called candidate set.
In our application, the size of the candidate set is signifi-
cantly smaller than n, thus the BRP can be easily solved
by any Branch and Bound algorithm. We then tested our
bundle recommendation algorithm in both offline and on-
line experiments. Both the offline and online results showed
our bundle recommendation algorithm can consistently im-
prove the baseline models in terms of predefined reward like
conversions or revenues.

In this work, we have shown bundle recommendation is
able to trigger more transactions in eCommerce, without
even leveraging the price advantage of bundles. It would
be interesting to integrate dynamic pricing techniques with
bundle recommendation. In some applications where order
sizes are usually greater than 2, the higher order terms in the
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objective function may play an important role. The tech-
niques of solving a reduced small-scale problem can be gener-
alized to the higher order bundle recommendation problem,
but the difficulty will be estimating and storing those higher
order tensors in practice. On the other hand, we notice that
some research has proposed to maximize diversity of rec-
ommendation [29]. Diversity can also be considered as one
type of cross dependency. We hope to integrate both diver-
sity maximization and bundling effect for recommendation
in the future. We believe that the bundle recommendation
problem can be generalized to other domains beyond eCom-
merce, and most techniques proposed in this work are still
valid. It boils down to constructing proper r and cross-
dependency Q for the particular application.
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